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Abstract

A new global ocean model (MPAS-Ocean) capable of using enhanced reso-

lution in selected regions of the ocean domain is described and evaluated.

Three simulations using different grids are presented. The first grid is a uni-

form high-resolution (15 km) mesh; the second grid has similarly high reso-

lution (15 km) in the North Atlantic (NA), but coarse resolution elsewhere;

the third grid is a variable resolution grid like the second but with higher

resolution (7.5 km) in the NA. Simulation results are compared to observed

sea-surface height (SSH), SSH variance and selected current transports. In

general, the simulations produce subtropical and sub polar gyres with peak

SSH amplitudes too strong by between 0.25 and 0.40 m. The mesoscale

eddy activity within the NA is, in general, well simulated in both structure

and amplitude. The uniform high-resolution simulation produces reasonable

representations of mesoscale activity throughout the global ocean. Simu-

lations using the second variable-resolution grid are essentially identical to

the uniform case within the NA region. The third case with higher NA
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resolution produces a simulation that agrees somewhat better in the NA

with observed SSH, SSH variance and transports than the two 15 km simu-

lations. The actual throughput, including I/O, for uniform high-resolution

simulation is the same as the structured grid Parallel Ocean Program ocean

model in its standard high-resolution 0.1◦ configuration. Our overall con-

clusion is that this ocean model is a viable candidate for multi-resolution

simulations of the global ocean system on climate-change time scales.

Keywords: MPAS-Ocean, global ocean model, finite-volume,

multi-resolution, spherical centroidal Voronoi tesselations

1. Introduction1

Over the relatively short history of global ocean modeling, the approach2

has been almost entirely based in structured meshes, conforming quadri-3

laterals and a desire to obtain quasi-uniform resolution. The first models4

were situated on a latitude-longitude grid (Bryan, 1969; Cox, 1970; Semtner,5

1974) but the grid singularities at the two “grid poles” proved to be prob-6

lematic. Generalizing the latitude-longitude grid to be a curvilinear grid7

(Murray and Reason, 2001; Smith et al., 1995) allowed placement of grid8

poles over land, thus eliminating these singularities from the ocean domain.9

Since resolution in all regions of these structured, conforming quadrilateral10

meshes must change in lockstep, doubling resolution requires an additional11

factor of 10 in computational resources. The ubiquity of this approach is12

confirmed through the following: all twenty-three global ocean models used13
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in the Intergovernmental Panel on Climate Change (IPCC) 4th Assess-14

ment Report were based on structured, conforming quadrilateral meshes15

(see Chapter 8, pg 597 of Randall and Bony, 2007).16

Our view is that the global ocean modeling community benefits from17

having a diversity of numerical approaches. While this diversification is well18

underway with respect to the modeling of the vertical coordinate (Hallberg,19

1997; Bleck, 2002), progress in developing new methods for modeling the20

horizontal structure of the global ocean on climate-change time scales has21

lagged behind. New multi-resolution approaches, both structured and un-22

structured, are emerging with applications focused on regional and coastal23

ocean modeling (Chen et al., 2003; Danilov et al., 2004; Shchepetkin and24

McWilliams, 2005; White et al., 2008). The challenges in transitioning25

from coastal and regional applications to global ocean climate applications26

is clearly discussed in Griffies et al. (2009). These challenges include the fol-27

lowing: lack of robust horizontal discretization, lack of high-order advection28

algorithms, lack of scale-adaptive (aka scale-aware) physical parameteriza-29

tions, difficulty in analyzing simulations, and computational expense. We30

place these challenges into two broad categories: formulation of dynami-31

cal core and formulation of scale-adaptive physical parameterizations. The32

formulation of the dynamical core includes issues related to spatial dis-33

cretization, temporal discretization, transport and computational expense.34

The driving requirements for a dynamical core to be applied in coastal35

applications can be very different from the requirements for a dynamical36

core to be used for global ocean climate-change applications. While issues37

related to geostrophic adjustment, tracer conservation, vorticity dynamics38

and computational efficiency have to be considered early in the formula-39
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tion of a global ocean dynamical core, these same issues can sometimes be40

significantly less important for models focused toward coastal applications.41

As a result, there is tension regarding how to construct an ocean dynami-42

cal core capable of bridging spatial scales from coastal to global in a single43

simulation. Should we start with a coastal model and build ”up” or start44

with a global ocean model and build “down”? We do not think that an45

answer to this question is known at this time, but our decided preference is46

to build “down”. Essentially, our approach is to construct an ocean dynam-47

ical core that, first and foremost, is a viable global ocean model then endow48

that model with the ability to regionally enhance the grid-scale resolution49

without degrading the quality of the global simulation.50

The model presented below is called MPAS-Ocean. The acronym MPAS51

represents Model for Prediction Across Scales. MPAS is set of shared soft-52

ware utilities jointly developed by National Center for Atmospheric Re-53

search and Los Alamos National Laboratory for the rapid prototyping of54

dynamical cores built “on top of” the horizontal discretization developed55

in Thuburn et al. (2009) and Ringler et al. (2010), along with the variable-56

resolution Spherical Centroidal Voronoi Tessellations (SCVTs) discussed in57

Ju et al. (2010). To date, four dynamical cores have been constructed using58

this framework: a shallow-water model (Ringler et al., 2011), a hydrostatic59

atmosphere model (Rauscher et al., 2012), a non-hydrostatic atmosphere60

model (Skamarock et al., 2012), and the ocean model discussed below. A61

land-ice model similar to Perego et al. (2012) is currently being developed62

within the MPAS framework. The challenges in creating global, multi-63

resolution models of the ocean or atmosphere are in many ways similar64

to those found for coastal models trying to scale up to global domains.65

4



Namely, we are challenged to create high-order transport schemes, imple-66

ment multi-scale time stepping algorithms, develop scale-adaptive physical67

parameterizations and produce new techniques for analyzing simulations.68

A global ocean model capable of resolving multiple resolutions within69

a single simulation must possess the following three properties before such70

a model will find widespread use in the ocean modeling community. First,71

as stated above, the ocean model must be competitive with structured-grid72

global ocean models with respect to physical correctness and simulation73

quality. Second, the multi-resolution model must be competitive with ex-74

isting global ocean models with respect to computational cost per degree of75

freedom. And finally, the dynamics of a multi-resolution ocean simulation76

as a function of grid-scale must compare favorably to the suite of global77

uniform simulations that span these same scales. In other words, simulated78

ocean dynamics should be insensitive to whether that scale is present in a79

multi-resolution simulation or a quasi-uniform simulation. A global multi-80

resolution ocean model that possesses these three properties would provide81

a compelling alternative to existing structured global ocean models. No82

such compelling alternative exists at present. Furthermore, the results we83

present below do not warrant us to definitely conclude that MPAS-O pos-84

sesses any of these properties, but rather strongly suggest such properties85

are obtainable within the MPAS-O approach.86

The construction of a new global ocean climate model is a decade-long87

endeavor. As such, our goal here is not to present a model that is ready88

for IPCC-class simulations. Our primary goal is to introduce this modeling89

approach and provide results responsive to the three properties we discuss90

immediately above. First, we introduce the MPAS approach by summa-91
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rizing the properties of the conforming mesh and finite-volume method.92

Second, we provide evidence that the numerical approach has merit as a93

global, quasi-uniform ocean model through analysis of the current struc-94

ture and mesoscale eddy characteristics. Third, we show that the mesoscale95

eddy characteristics and mean-flow conditions of the North Atlantic can be96

reproduced with a variable resolution ocean model that has high resolution97

only in the North Atlantic region. And finally, we compare the compu-98

tational performance of MPAS-O to the LANL Parallel Ocean Program99

(POP). While a plausible representation of the North Atlantic, obtained100

with acceptable computational expense, is necessary for the acceptance of101

a new modeling approach, we realize that such results are far from suffi-102

cient. Yet, it seems like a reasonable place to begin. This contribution is103

entirely focused on the evaluation of the dynamical core and omits almost104

entirely any discussion of scale-adaptive physical parameterizations. This105

choice simply reflects the reality that global ocean models are built starting106

from a dynamical core.107

A summary of the simulations discussed in Section 5 provides a sense108

for our motivation and intended scope. The first simulation, x1-15 km, uses109

a global quasi-uniform (x1) grid with a nominal resolution of 15 km. The110

second simulation, x5-NA-15 km, uses a global mesh that varies in resolu-111

tion by a factor of ∼5 (x5) with a 15 km resolution in the North Atlantic112

(NA) and 80 km elsewhere. The last simulation, x5-NA-7.5 km uses 7.5 km113

resolution in the NA and approximately 40 km resolution elsewhere. The114

validity of the modeling approach when configured with a global, quasi-115

uniform resolution is evaluated by comparing the x1-15 km simulation to116

observational estimates of mean and variance of sea-surface height, as well117

6



as analysis of volume transports across well-documented sections. The va-118

lidity of the multi-resolution modeling approach is evaluated by comparing119

the x5-NA-15 km simulation to the x1-15 km simulation in the NA region.120

While the x1-15 km simulation certainly has errors as compared to observa-121

tions, the error in the multi-resolution approach is measured by comparing a122

variable resolution simulation to its quasi-uniform counterpart. Therefore,123

a “perfect” multi-resolution simulation will reproduce both the positive and124

negative results of its quasi-uniform counterpart within the high-resolution125

region. The x5-NA-7.5 km simulation serves to motivate one potential ben-126

efit of this modeling approach as it requires approximately the same com-127

putational expense, including the cost of a reduced time step, as the x1-15128

km simulations, but redistributes the computational degrees of freedom to129

obtain higher resolution in the NA.130

Section 2 provides an overview of the meshes used in this study. More131

importantly, Section 2 discusses the underlying properties of these meshes132

that have led us to choose them over more traditional options. Section 3133

provides a high-level summary of the numerical approaches used to con-134

struct this global ocean model. Since many of these methods are commonly135

employed in global ocean modeling, the discussion is primarily meant to136

highlight how this ocean model compares and contrasts with current IPCC-137

class ocean models. A detailed derivation of the model equations is discussed138

in Appendix A. Section 4 provides specific details used in the simulations139

that are then discussed in Section 5. We close in Section 6 with a summary140

of what has been accomplished with this contribution and what remains to141

be done.142
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2. Multi-resolution tessellations of the global ocean143

The novel aspect of this contribution is the ability to model the global144

ocean system using a high-quality, yet easy-to-construct, multi-resolution145

tessellation (aka mesh or grid). High-quality refers to high local uniformity146

while multi-resolution refers to the presence of multiple scales. While the147

attributes of local-uniformity and multi-resolution might seem at odds, the148

meshes described below have both of these properties. As such, we begin149

by introducing the relevant aspects of these multi-resolution meshes and150

describe how such meshes are constructed. While the numerical method to151

be described below can be employed on a wide-range of conforming meshes,152

our clear preference is to use Spherical Centroidal Voronoi Tessellations153

(SCVTs). Descriptions of SCVTs and their mathematical properties has154

been discussed at length in the literature. So our purpose here is only to155

review the most salient aspects of SCVTs, while providing references to156

both the seminal and more recent discussions of these grids.157

We begin with a description of a Voronoi tessellation, then move to a158

discussion of SCVTs that are a special subset. For the moment, let us159

assume that we wish to tessellate the entire surface of the sphere, S, with n160

cells. We start by populating S with {xi}ni=1 distinct grid points. We then161

assign every point on the sphere to whichever xi it is closest to. This results162

in a set of Voronoi regions, {Vi}ni=1, where each region (or cell) is uniquely163

associated with a single grid point. Mathematically, this can be expressed164

as165

Vi = {y ∈ S | ‖xi − y‖ < ‖xj − y‖ for j = 1, . . . , n and j 6= i}. (1)

An example of a Voronoi tessellation on the sphere can be found in Figure 1166
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Figure 1: These are examples of Voronoi tessellations. The mesh on the left is created

by randomly distributing 366 points on the surface of the sphere and determining the

Voroni regions following (1). The mesh on the right begins as the mesh on the left, but

moves the points on the sphere via iteration such that (2) is also satisfied.

(left). Ju et al. (2010) provide a concise summary of the history of Voronoi167

tessellations and their eventual use in climate modeling, whereas Okabe168

et al. (2009) provide a complete survey of the history, mathematics and169

application of these tessellations. Algorithms for the construction of Voronoi170

diagrams are mature and discussed in Renka (1997) and Okabe et al. (2009).171

A Voronoi tessellation is the dual-mesh of a Delaunay triangulation;172

specifying either uniquely determines the other. The meshes are dual in173

the sense that the vertices of one mesh are the centers of the other mesh.1174

This duality also extends to the notion of orthogonality. The line segment175

connecting two {xi} points that share an edge is orthogonal to that shared176

edge. This property of orthogonality is critical to the numerical method177

1This sense of duality can be seen in Figure 3, where the hexagon is a Voronoi region

and the triangle is a Delaunay region.
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that is built “on top” of these meshes (Thuburn et al., 2009; Ringler et al.,178

2010). While Voronoi tessellations have a few compelling attributes, the179

mesh shown in Figure 1 (left) is clearly not optimal for numerical modeling.180

We regularize this Voronoi tessellation by requiring that each grid point be181

the centroid of its Voronoi region with respect to a user-defined mesh-density182

function. Thus, we require183

xi = xc
i =

∫
Vi

yρ(y) dy∫
Vi

ρ(y) dy
(2)

where ρ is the user-defined mesh-density function. Equation (1) with the184

constraint of (2) results in an iterative procedure. The Voronoi regions de-185

pend on the location of the grid points (as shown in (1)), but the location of186

the grid points depend on the region of integration (as shown in (2)). For-187

tunately, a host of methods exist to efficiently solve this system iteratively188

(Lloyd, 1982; Ju et al., 2002; Jacobsen et al., 2012)189

These Centroidal Voronoi Tessellations (CVTs) and their spherical coun-190

terparts, SCVTs, both regularize the Voronoi tessellation and provide a191

powerful degree of freedom through the specification of the mesh-density192

function. For example, Figure 1 (right) shows an SCVT where the mesh193

density function has large values in the center and low values elsewhere.194

Note that the iterative procedure used to produce Figure 1 (right) starts195

from Figure 1 (left). The mathematical analysis of (S)CVTs was reinvig-196

orated by Du and Gunzburger (1999) who showed that these tessellations197

are often optimal solutions to a wide range of important problems, such as198

data compression, quadrature rules, finite-difference schemes and resource199

allocation.200
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From the perspective of global ocean modeling, two properties of (S)CVTs201

are noteworthy. The first property is the known relationship between the202

(input) mesh-density function and the (output) grid resolution (Ju et al.,203

2010). On the plane or sphere, this relationship is stated as204

dxi
dxj
≈
(
ρ(xj)

ρ(xi)

) 1
4

, (3)

where dx is the nominal grid resolution as measured by the distance be-205

tween neighboring xi points. Equation (3) states that given ρ and the grid206

resolution at any one location, we know the grid resolution at every point207

in the domain. Figure 2 in Ringler et al. (2011) demonstrates that this208

relationship holds with a high level of accuracy. The practical implication209

of (3) is that we can build our mesh density function to produce the desired210

grid resolution in each part of the ocean domain. Figure 1 (right) uses a211

simple mesh-density function expressed as212

ρ(xi) = (1− γ)

[
1

2

(
tanh

(
β − ‖xc − xi‖

α

)
+ 1

)]
+ γ (4)

where β measures the width of the high-resolution region, α defines the213

width of the mesh transition zone, xc denotes the center of the high-resolution214

region and γ controls the ratio between the nominal grid spacing in the high215

and low resolution regions. For the variable resolution meshes used in this216

study, we set β = 0.628 radians, α = 0.1 radians, xc = (310◦, 35◦) and217

γ = (1/6)4. In general, we specify 0 < ρ ≤ 1 where ρ ≈ 1 corresponds218

to the high-resolution region and ρ ≈ γ corresponds to the low-resolution219

region. With this convention, the ratio between grid resolutions in the high220

and low resolution regions can be obtained as γ
1
4 . So with γ set to (1/6)4,221

we expect to obtain meshes that vary in resolution by 6X. As will be seen222

11



below, the resulting meshes vary in resolution by a little more than 5X.223

This difference between the theoretical estimate of 6X and the result of 5X224

is an indication of the level of precision offered by the underlying theory.225

More exotic choices of mesh-density function are possible, for example see226

Figures 7, 8 and 9 of Ringler et al. (2008).227

The second noteworthy property is known as the “hexagon theorem”228

proven independently by Gersho (1979) and Newman (1982). The theorem229

states that given minimal constraints on ρ, such as continuity, the preferred230

polygon is a perfect hexagon. Stated alternatively, as the number of grid231

points in the domain is increased while holding ρ fixed, the mesh evolves232

toward a set of perfect hexagons. The practical result of this theorem is233

that for a given mesh-density function, the local mesh uniformity increases234

as the number of grid points are increased. Thus, meshes are guaranteed to235

improve in quality as resolution is increased. Ample anecdotal evidence for236

this can be found in Tables 1, 2 and 3 of Ringler et al. (2008).237

In summary, SCVTs offer precise control over the distribution of grid238

points with the promise of high mesh quality as the number of grid points239

increases. These two reasons, as well as the isotropy of the hexagon relative240

to quadrilaterals and triangles, lead us to build the ocean dynamical core241

“on top” of SCVTs.242

To this point we have only discussed the construction of meshes that243

cover the entire sphere. Currently we produce global ocean meshes by sim-244

ply culling those Voronoi regions that reside mostly over land. While this245

is the common approach for ocean global models, it is not optimal. SCVTs246

offer the opportunity to fit the mesh to the land-ocean boundary and/or247

continental shelf break, as shown in Figure 10 of Ju et al. (2010). While we248
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have yet to exploit this attribute of SCVTs, we expect that doing so will249

lead to improved simulations, as well as the opportunity to better represent250

coastal ocean dynamics.251

This study employs three meshes, as summarized in Table 1. The first252

simulation, x1-15 km, uses 1.8 × 106 grid points with a uniform density253

function ρ = 1, resulting in a quasi-uniform, global ocean mesh with a254

nominal resolution of 15 km. This mesh contains 1.9 × 105 grid points,255

or approximately 10% of the mesh, within the NA, i.e. within a distance256

β from xc. The next mesh, x5-NA-15 km, is constructed using (4). This257

mesh contains a total of 2.5×105 grid points, with 70% of those grid points258

located in the NA. The x1-15 km and x5-NA-15 km meshes have nearly259

the same resolution in the NA, about 15.1 km and 15.8 km respectively,260

and so are used to compare the uniform versus the variable resolution mesh261

simulations.262

Table 1: Summary of meshes used in simulations: Three meshes are used in the global

ocean simulations. The x1-15 km mesh has approximately 15 km resolution throughout

the ocean. The x5-NA-15 km simulation has approximately 15 km resolution in the NA

region and 80 km elsewhere. The x5-NA-7.5 km has approximately 7.5 km resolution in

the NA and 40 km resolution elsewhere.

Simulation Name Grid Cells Grids Cells in NA Resolution (km)

x1-15 km 1.8× 106 1.9× 105 ∼15, ∼15

x5-NA-15 km 2.5× 105 1.7× 105 ∼80, ∼15

x5-NA-7.5 km 1.0× 106 6.7× 105 ∼40, ∼7.5

The two variable resolution meshes, denoted as x5-NA-15 km and x5-263

NA-7.5 km, are meant to demonstrate a new opportunity in global ocean264
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modeling. The x5-NA-15 km simulation requires approximately 1/7 the265

computational resources of the x1-15 km simulation, but retains the same266

resolution in the NA. Thus, the x5-NA-15 km simulation offers the potential267

to obtain eddy-permitting solutions of the NA at a fraction of the computa-268

tional cost. Alternatively, the x5-NA-7.5 km simulation uses approximately269

the same resources as the x1-15 km simulations,2 thus offering modelers the270

opportunity to reallocate a fixed amount of computational resources into a271

specific region in order to better represent a process of interest.272

The top graphic in Figure 2 shows the mesh density function, where red273

indicates the region of high resolution, purple indicates the region of low274

resolution and green indicates the mesh transition zone. Regions of this275

mesh are also shown in Figure 2. The graphic on the left expands the mesh276

in the region of the Florida Straits to a scale where individual grid cells are277

visible. The graphic on the right expands a region of the mesh transition278

zone. We note that even in the mesh transition zone, the mesh is smooth279

and locally uniform.280

3. Numerical Approach281

The approach employs variations of well accepted numerical approaches282

to obtain multi-resolution representations of the global ocean system. We283

employ a finite-volume discretization of the Boussinesq equations using a284

C-grid staggering in the horizontal (Thuburn et al., 2009; Ringler et al.,285

2010), a z∗ vertical coordinate (Adcroft and Campin, 2004), a split-explicit286

2The x5-NA-7.5 km simulation use 1/2 the grid cells but also about 1/2 the time step

as compared to the x1-15 km simulation, thus resulting in both simulations requiring

approximately the same amount of computational resources.
14



Figure 2: This figure summarizes the quality and characteristics of the multi-resolution

meshes. The top figure shows the mesh density with red values indicating ρ ≈ 1 and

blue values indicating ρ ≈ γ. The lower left and right panels expand a portion of the

mesh in the vicinity of the Florida Straits and tropical Atlantic, respectively. We note

that both the lower panels exhibit a very uniform mesh composed entirely of near-regular

hexagons.
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time stepping algorithm (Higdon, 2005), a quasi 3rd-order monotone ad-287

vection scheme for tracers (Skamarock and Gassmann, 2011) and the Leith,288

enstrophy-cascade turbulence closure (Leith, 1996). The goal of this section289

is to broadly discuss these parts of the global ocean model, with an emphasis290

on the horizontal discretization since this is not currently employed in exist-291

ing global or coastal ocean models. Specific details related to the numerical292

approach are discussed in Appendix A.293

3.1. Horizontal Discretization294

The horizontal discretization (detailed in Appendix A.4) is a C-grid,295

finite-volume method that is applicable to a broad class of meshes. Issues296

related to geostrophic balance and geostrophic adjustment are analyzed297

by Thuburn et al. (2009) in the context of the linearized shallow-water298

equations. The analysis of the nonlinear shallow-water system is conducted299

in Ringler et al. (2010) where issues related to mass, potential vorticity and300

energy conservation are discussed. The staggering of variables shown in301

Figure 3 is essentially the C-grid staggering as expressed on an SCVT mesh302

where the mass, tracers, pressure and kinetic energy are defined at centers303

of the convex polygons and the normal component of velocity is located at304

cell edges. As with all C-grid staggered models, the divergence of velocity305

is defined at cell centers and the curl of velocity is defined at cell vertices.306

The properties of this C-grid discretization are consistent with the re-307

quirements of global ocean simulation on time scales of decades to centuries.308

By virtue of retaining a mass conservation equation and prognosing mass-309

weighted tracer quantities, the method guarantees conservation of mass and310

mass-weighted tracer substance. In terms of energetics, the Coriolis force is311
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qv

ue

mass points

velocity points

vorticity points

Voronoi region

hi

Figure 3: The staggering of variables for the generalized C-grid method. The Voronoi

region represents a typical finite-volume cell where scalars, such as thickness (hi), are

defined. The component of velocity normal to the cell edges (ue) is predicted. The

divergence of this component of velocity is naturally defined at mass points, whereas the

curl of this velocity is naturally defined at the vertices (qv) of the Voronoi region.
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computed so that it is energetically neutral (see Section 3 of Thuburn et al.312

(2009)), and exchange of kinetic and potential energy is conservative (see313

(70) of Ringler et al. (2010)). In terms of vorticity, the curl of the discrete314

momentum equation produces a discrete absolute vorticity equation where315

circulation is conserved within closed loops moving along Lagrangian tra-316

jectories, i.e. the method includes a discrete analog of Kelvin’s circulation317

theorem (see (35) of Ringler et al. (2010)).318

This method can be regarded as a generalized C-grid discretization in the319

sense that the method holds for any conforming mesh composed of convex320

polygons that are locally-orthogonal. The requirement of conforming simply321

means that every edge of the mesh is uniquely shared by two grid cells. The322

requirement of locally-orthogonal means that the line segment connecting323

two grid points is orthogonal to their shared edge. It turns out that a very324

large number of meshes meet these requirements: latitude-longitude grids,325

dipole and tripole displaced pole grids, conformally-mapped cubed sphere326

grids, Voronoi tessellations and Delaunay triangulations.327

The novel aspect of this C-grid algorithm is that its mimetic properties328

are unaltered when configured on a multi-resolution mesh. In a very real329

sense, it is the combination of the mesh technology outlined in Section 2330

paired with this generalization of the C-grid method that allows the ex-331

ploration of global, multi-resolution ocean modeling. In the context of the332

shallow-water equations, Ringler et al. (2011) verified the robustness of this333

approach by configuring the Williamson (1992) test case suite with meshes334

that varied by up to a factor of 16 in grid spacing. All of the conservation335

properties were confirmed using the shallow-water test cases. This same336

numerical approach has been used to construct full-physics atmosphere gen-337
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eral circulation models based on the hydrostatic (Rauscher et al., 2012) and338

non-hydrostatic (Skamarock et al., 2012) primitive equations.339

3.2. Vertical Discretization340

The vertical coordinate is Arbitrary Lagrangian-Eulerian (ALE), which341

provides a great deal of freedom to specify the behavior of the vertical co-342

ordinate that is most appropriate for the application. The user may choose343

at run-time among z-level, where all layers have a fixed thickness except for344

the top layer; z∗, where all layer thicknesses compress in proportion to the345

sea surface height (Adcroft and Campin, 2004); z-tilde, where thicknesses346

respond to high-frequency oscillations in a Lagrangian manner (Leclair and347

Madec, 2011); and idealized isopycnal, where there is no vertical transport348

between layers. The choice of vertical coordinate is enforced in the com-349

putation of the vertical transport, while the prognostic equation for layer350

thickness is solved in the same manner in all cases (See Appendix A.3 for351

a detailed discussion).352

The simulations presented here use a z∗ vertical coordinate. Advantages353

include reduced spurious vertical mixing due to surface gravity waves; layers354

may be extremely thin to better resolve mixed layer dynamics; and future355

simulations may easily accommodate partially submerged ice shelves and356

embedded sea ice. These simulations used 40 vertical layers ranging in357

thickness from, on average, 10 m at the surface to 250 m at depth with358

a maximum ocean depth of 5500 m. Bathymetry is accounted for using359

land-filled full cells that prohibit fluid advection at horizontal and vertical360

boundaries.361
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3.3. Temporal Discretization362

All modern ocean models take advantage of a baroclinic/barotropic time-363

splitting method to increase the time-step length and hence increase compu-364

tational efficiency. The time step for the two-dimensional barotropic mode365

is limited by fast surface gravity waves with speeds of ∼200 m/s, while366

the remaining three-dimensional baroclinic sytem is limited by slow inter-367

nal waves with speeds of ∼1 m/s. We use a split explicit method (see368

Appendix A.5), where the barotropic (thickness-weighted vertical average)369

velocity and total ocean depth are explicity subcycled within each large370

time step of the three-dimensional baroclinic velocity. The time stepping371

algorithm is loosely based on Higdon (2005). The full tracer and thick-372

ness equations are stepped forward with the mid-time velocity values, and373

density and pressure are updated at the end of the time step. This whole374

process is repeated in a predictor-corrector scheme, and implicit vertical375

mixing of tracers and momentum completes each time-step.376

3.4. Tracer Transport377

The transport equation of potential temperature and salinity (A.41) is378

expressed in flux-form, in that our prognostic equation is for mass-weighted379

tracer substance.3 Tracer values (e.g. potential temperature) are recovered380

by dividing by the mass of the grid cell at the end of every time step. Tracer381

transport is completed at the end of the time step, so the mass flux across382

every edge is known. Thus, the tracer transport algorithm reduces, in large383

part, to reconstructing the tracer fields at cell edges, i.e. determining the ϕ̂384

3In the Boussinesq system, this reduces to volume-weighted tracer substance.
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shown in A.41. We obtain two estimates of the tracer edge values, one from a385

high-order flux reconstruction and one from a low-order flux reconstruction.386

In the horizontal, the high-order flux reconstruction is done following387

Skamarock and Gassmann (2011) where, at a given edge, the tracer field is388

approximated by averaging the Taylor series approximations from both cells389

that share that edge (see (11) from Skamarock and Gassmann (2011)). Since390

the edge is exactly midway between the cell centers, all odd-powered deriva-391

tives cancel and, thus, only second derivative information in the direction392

normal to the cell edge is required. The second derivative information is ob-393

tained by first computing a least squares fit using the cell center values and394

all distance-1 neighbors (i.e. all neighbors that share an edge with the cell395

center, see Figure 1 from Skamarock and Gassmann (2011)). The scheme396

is implemented with an upwind-bias (β=0.25 in (11) from Skamarock and397

Gassmann (2011)) to produce a 3rd-order accurate reconstruction of tracer398

flux divergence on uniform hexagonal meshes. In the vertical, high-order399

estimates of tracer values at layer edges are reconstructed using a 3rd-order400

cubic spline. While the 3rd-order flux reconstructions improve the accu-401

racy of the transport scheme, the Skamarock and Gassmann (2011) scheme402

exhibits 2nd-order spatial convergence because the flux-divergence opera-403

tor remains 2nd-order accurate. The low-order reconstruction, in both the404

horizontal and vertical directions, is simply the upstream cell center value.405

These two estimates of the tracer at cell edges are used to produce a high-406

and low-order estimate of the tracer flux. We then use the flux-corrected407

transport scheme of Zalesak (1979) to blend the high- and low-order fluxes408

to yield a monotonic evolution of the tracer field.409
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3.5. Horizontal Turbulence Closures410

The constraint of monotonicity in the transport of potential temper-411

ature and salinity is sufficient to regularize the evolution of these scalar412

quantities. Thus, no additional explicit diffusion is required for the poten-413

tial temperature and salinity fields, unless needed to represent unresolved414

physical processes. In contrast, the velocity field is not evolved based on415

flux-form discretization and, therefore, requires an explicit closure to pre-416

vent the build-up of grid-scale kinetic energy and enstrophy. We use two417

methods to regularize the momentum equation: biharmonic viscosity and418

the Leith turbulence closure.419

Biharmonic viscosity is a standard method for controlling grid scale noise420

in the velocity. Following Smith et al. (2000) and Hecht et al. (2008), we421

scale the biharmonic viscosity parameter as (∆x)3, with a baseline value of422

5.0e10 m4/s at a grid spacing of 15 km. When scaled to adjust for resolution,423

this value of biharmonic viscosity is a factor of 2 to 10 less than that used424

in Hecht et al. (2008).425

Our preference in configuring these simulations is to use the smallest426

value of biharmonic viscosity sufficient to control grid scale noise in the ve-427

locity field and rely on the Leith turbulence closure (Leith, 1996) to remove428

the downscale cascade of enstrophy. The Leith closure is the enstrophy-429

cascade analogy to the Smagorinsky (1963) energy-cascade closure, i.e.430

Leith (1996) assumes an inertial range of enstrophy flux moving toward431

the grid scale. The assumption of an enstrophy cascade and dimensional432

analysis produces right-hand-side dissipation, D, of velocity of the form433

D = ∇ · (ν∗∇u) = ∇ ·
(
Γ |∇ω| (∆x)3∇u

)
(5)
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where ω is the relative vorticity, u is the horizontal velocity, ∆x is the local434

grid spacing and Γ is a non-dimensional, O(1) parameter. In the simulations435

presented below, we set Γ = 1.436

While the Leith closure is used much less often than the Smagorinsky437

closure, the Leith closure has shown promise when the grid resolution per-438

mits mesoscale eddies (Fox-Kemper and Menemenlis, 2008). In addition,439

an evaluation of the Leith closure in idealized, 2D turbulence simulations440

indicates that this closure is competitive with other LES closures (Pietar-441

ila Graham and Ringler, 2012).442

Vertical viscosities and diffusivities were computed using the Richardson443

number formulation of Pacanowski and Philander (1981) with background444

values of 10−4 and 10−5 m2/s, respectively. As stated above, the vertical445

mixing is solved implicitly, thus allowing the large values of viscosity and446

diffusivity of 1.0 m2/s to be used in regions that are gravitationally unstable.447

4. Design of Numerical Experiments448

4.1. Initial and Boundary Conditions449

The land/sea boundary and bathymetry for each simulation (listed in450

Table 1) are obtained by interpolation of the ETOPO2 2-Minute Gridded451

Global Relief Dataset available from the National Geophysical Data Center.452

Given a global mesh (e.g. a higher resolution version of the mesh shown453

in Figure 1 (right)), we loop over all grid cells and, for each grid cell, we454

find the nearest ETOPO2 data point. If the ETOPO2 data point has a455

positive elevation, the grid cell is marked as land and culled from the mesh.456

If the ETOPO2 data point has a negative elevation, then the grid cell is457

marked as ocean and retained. The depth of each ocean column is specified458
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to be the nearest full-level interface to the ETOPO2 data point, i.e. partial459

bottom cells (Adcroft et al., 1997) are not included in these simulations.460

Note that alternative strategies of averaging ETOPO2 data over the ocean461

grid cell will result in smoother representations of bathymetry. We require462

each ocean column to contain at least three vertical levels. This approach463

specifies the ocean domain. Note that the ocean model domain is composed464

of a set of full grid cells. As a result, the land-sea boundary is defined by465

a set of cell edges, as can be seen in the lower left panel of Figure 2. As466

described above, the velocity is defined at cell edges. At all edges that lie467

along the boundary of the ocean domain, we employ a no-slip boundary468

condition on the velocity field.469

Initial distributions of potential temperature and salinity are obtained470

from the annual mean WOCE climatology (Gouretski and Koltermann,471

2004). For simplicity, the sea surface temperature (SST) and salinity (SSS)472

are restored to the monthly mean WOCE surface data with a time scale473

of 30 days in the simulations presented below. For the surface momentum474

flux, monthly mean wind stress is computed offline using 6-hourly ”Nor-475

mal Year” forcing data from the Coordinated Ocean Reference Experiment476

(CORE, Large and Yeager (2004)) and bulk formulae of Large and Pond477

(1982). At any given day, the model obtains the restoring SST and SSS478

along with the imposed wind-stress by linearly interpolating between the479

monthly forcing data sets. No modifications are made to account for sea-ice480

coverage.481

The simulations are started from rest and integrated for 20 simulated482

years. Since a decade is sufficient to reach a quasi-equilibrium for the upper483

ocean circulation, the first ten years are discarded as spin-up. All results484
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that refer to time-mean or variance calculations imply the use of the last 10485

years of simulation. Variance and Root Mean Square (RMS) calculations486

are computed by accumulating sums of variables and their squares at every487

time step over the last ten years of the simulation.488

5. Results489

5.1. Comparison of global, eddy-permitting simulation to observations490

Before comparing the x1-15 km simulation to observational datasets, we491

begin with a brief survey of the kinetic energy (KE) field at a depth of492

100 m as shown in Figure 4. This figure shows a representative snapshot493

of the global KE field for October 1st of Year 15. The color scale is satu-494

rated to red for velocities at 1.0 m/s. Beginning in the tropics, the Pacific495

contains a strong equatorial undercurrent with extended sections above 1.0496

m/s. Tropical Instability Waves (TIWs) are present with a wavelength of497

approximately 1000 km, which is consistent with observations (Legeckis,498

1977). The TIWs begin to grow each July, reach maximum amplitude499

in November and then decay in January. In the Atlantic the equatorial500

undercurrent is also present, with velocities generally below 1.0 m/s. As501

observed, the Atlantic equatorial undercurrent is fed via retroflection of the502

north Brazil current, which periodically sheds coastally trapped rings that503

propagate into the Caribbean.504

Moving into the midlatitudes, the x1-15 km simulation exhibits the shed-505

ding of Agulhas Rings with a frequency of 4 or 5 per year, which is con-506

sistent with observations (Schouten et al., 2002). While the frequency is507

approximately correct, the vortex rings are too long-lived with their co-508

herent structure maintained even after reaching the South American coast.509
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Figure 4: A snapshot of velocity magnitude on October 1st Year 15 at a depth of 100

m for the x1-15 km simulation. The color scale saturates at red where instantaneous

velocities reach 1.0 m/s.
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The track of the Agulhas rings is approximately correct; the rings move510

in a northwest direction immediately after shedding, then turn to move al-511

most directly west between latitudes of 20◦S and 25◦S. However, almost512

all of the rings are locked into a similar path, which is not the case in513

the real ocean, though is not uncommon in models (e.g., McClean et al.514

(2011)). The location of retroflection of the Agulhas Current is variable,515

sometimes extending west beyond Cape Agulhas. Further north along the516

East African coast, the simulation reproduces the seasonality of the Indian517

Ocean currents with the boreal summer occurrence of the Great Whirl as518

seen in Figure 4 at 5◦N-60◦E and the boreal winter intensification of the519

South Equatorial Countercurrent (not shown).520

Elsewhere in the Southern Hemisphere mid-latitudes, the x1-15 km sim-521

ulation exhibits vortex ring shedding in the region off west Australia. The522

shedding is spawned from both the Leeuwin Current (Fang and Morrow,523

2003) and Flinders Current (Middleton and Cirano, 2002) during the aus-524

tral winter when these currents intensify. The rings move westward into the525

south Indian Ocean subtropical gyre and decay before reaching the African526

coast.527

The dominant feature in the Southern Ocean is the highly filamented528

Antarctic Circumpolar Current (ACC). Locations of the major fronts, such529

as the Sub-Antarctic Front (SAF) and the Polar Front (PF) are clearly530

reflected in the 100 m KE. The westward Antarctic Coastal Current can531

also be seen just offshore of the Antarctic continent at all longitudes.532

In the northern Hemisphere both the major western boundary currents533

exhibit delayed separation by, on average, approximately 300 km. The ori-534

entation of the Kuroshio is appropriate with the axis oriented east-west. As535
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will be discussed in more detail below, the axis of maxiumum Gulf Stream536

variability is rotated about 10◦ counter clockwise relative to observations.537

Moving polewards in the Atlantic basin, the East and West Greenland cur-538

rents are present with a clear connection to the Labrador Current.539

A closer examination of the structure of the equatorial currents is shown540

in Figure 5. The left panels show zonal flow through a meridional section541

at 140◦W from the (bottom) x1-15 km simulation and (top) observations542

(Johnson et al., 2002). The right panels show zonal flow along the equator.543

The Equatorial Undercurrent (EUC) has the correct velocity of ∼1.0 m/s at544

a depth that is ∼20 m too shallow. The North Equatorial Counter Current545

(NECC) has an amplitude only half as large as observed and is shifted ∼1◦546

equatorward. In addition, the NECC has a subsurface maximum that is547

not seen in the observations. Both the North and South Subsurface Coun-548

tercurrents are present with the correct depth of 300 m, amplitude of 0.1549

m/s and location of ∼4◦ latitude. The model also captures the Equatorial550

Intermediate Current (EIC) at a depth of 300 m with an amplitude of 0.1551

m/s. Relative to observations the EIC is shifted east and, thus, has a larger552

amplitude at 140◦W than the observed estimate. The eastward shift of the553

EIC is readily visible in the longitudinal sections shown to the right. The554

primary bias along the equator is that the simulated EUC does not exhibit555

the appropriate amount of upward tilt toward the east. We attribute this556

bias to an insufficient amount of downward mixing of westward momentum557

between 175◦W and 125◦W. Overall, the model compares favorably with558

observations and to other models of comparable resolution, e.g. Figure 11559

of Maltrud and McClean (2005).560

In Figure 6 the time-mean, global SSH from the x1-15 km simulation561
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Figure 5: Cross section of zonal velocity from observations (top) and from the x1-15 km

simulation (bottom) at 140◦W (left) and the equator (right). Contour interval is 10 cm

s−1 with heavy contours at 50 cm s−1. Observations are averaged over multiple studies

from 1985 to 2000 (Johnson et al., 2002).
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is compared to the Maximenko et al. (2009) dataset which merges Grav-562

ity Recovery and Climate Experiment (GRACE) data with observations of563

near-surface velocity to estimate the mean dynamic topography. All of the564

large-scale gyres are represented in the x1-15 km simulation, but with am-565

plitudes that are larger than those found in the Maximenko et al. (2009)566

dataset. The difference plot (Figure 6, bottom) indicates that the subtropi-567

cal gyres exhibit peak SSH amplitudes that are typically too large by 0.25 to568

0.40 m as compared to the observations. Overall, the structure of SSH shown569

in Figure 6 closely follows Figure 8c of McClean et al. (2011) that shows the570

mean SSH from POP when forced with the same wind-stress as used in the571

x1-15 km simulation. The subtropical gyre in the North Pacific, while too572

large in amplitude, has the correct latitudinal extent. The subpolar front on573

which the Kuroshio current resides is shifted poleward approximately 300574

km but has the correct east-west orientation. The South Pacific subtropical575

gyre is of approximately the correct amplitude, but shows a banded struc-576

ture in the meridional direction that is not found in the observations. Again,577

this is most likely due to the applied wind stress since a similar pattern is578

seen in POP simulations that use the same monthly stress field (McClean579

et al. (2011), Figure 8c). As compared to observations, a large discrepancy580

in SSH occurs just equatorward and east of New Zealand. In this region581

the x1-15 km simulation maintains a strong, east-west oriented subtropical582

front that has no analog in the observations. The largest discrepancy in the583

region of the ACC is the maximum SSH amplitude of the Argentine sub-584

polar gyre. In the region of the Agulhas current, the westward extension585

of the subtropical gyre is well simulated but with frontal structures that586

are too strong. The impact of the excessive mesoscale activity and the very587
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regular path of the Agulhas Rings is evident even in the mean SSH, with the588

x1-15 km simulation supporting a weak northwest-southeast oriented front589

along the mean trajectory of these coherent eddies. The model simulates590

well the frontal boundary in the region of Madagascar that connects the591

South Equatorial Current to the East African Coastal Current. We defer a592

discussion of the simulation in the NA until the next section.593

The global SSH RMS from the x1-15 km simulation is compared to the594

AVISO dataset in Figure 7. Overall, each of the major areas of significant595

mesoscale eddy activity are represented in the x1-15 km simulation. In ad-596

dition, the amplitude of the mesoscale activity in those major regions is, in597

general, accurately represented in the simulation. For example, SSH vari-598

ance has the correct amplitude in the region of the Kuroshio, but is shifted599

polewards by approximately 300 km as is consistent with the biases iden-600

tified in mean SSH. The eddy activity in the regions of the East Australia601

Current, Drake Passage and Argentine Basin is in close agreement with the602

AVISO dataset with respect to both structure and amplitude. The anoma-603

lous frontal structure residing northeast of New Zealand that is discussed604

above is clearly reflected in Figure 7. There is also vigorous shedding of605

vortex rings from West Australia that migrate well into the South Indian606

Ocean. The SSH variance in the Agulhas Current along its coastal extent607

and in the retroflection region is well represented in shape, but is too strong608

in magnitude after retroflection. Again, the Agulhas Rings are too strong609

and follow too regular of a path, thus resulting in too much variance of610

SSH along their trajectory across the South Atlantic. As above, we defer a611

discussion of the simulation in the NA until the next section.612

The transports of some of the major current systems are shown in Table613
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Figure 6: Mean SSH from observations (top) and from the x1-15 km simulation (middle).

Bottom panel shows x1-15 km - observations.
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Figure 7: SSH RMS from observations (top) and from the x1-15 km simulation (bottom).

Bottom panel shows x1-15 km - observations.
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2. While transports for all three simulations are listed in Table 2, we will614

defer discussion of the variable resolution simulations until the next sec-615

tion. The observed transports are listed with the best estimate along with616

an estimate of observational error. The simulated transports are listed with617

a mean transport along with the standard deviation. The x1-15 km sim-618

ulation is broadly reproducing the observed transports, meaning that the619

simulated mean transports plus/minus one standard deviation are all within620

observational error. As is typically the case for ocean models, those cur-621

rents associated with intense mesoscale activity are stronger than observed,622

e.g. the simulated transports of Drake Passage, Tasmania-Antarctica and623

Agulhas are all larger than observed. On the other hand, the simulated624

transports of tropical current systems and/or current systems that are sen-625

sitive to channel configuration are all weaker than observed, e.g. the simu-626

lated transports of the Indonesian Throughflow and Mozambique Channel.627

In these simulations, ocean depth is taken directly from the ETOPO2 to-628

pography data without widening or deepening channels in order to improve629

transport statistics.630

5.2. Comparison of global, multi-resolution simulations to global, quasi-631

uniform simulation632

One of the main questions to be addressed in this contribution is the ex-633

tent to which mesoscale activity can be simulated using a variable resolution634

mesh. As such, this section compares two variable resolution simulations,635

x5-NA-15 km and x5-NA-7.5 km to the quasi-uniform simulation discussed636

above. Before conducting this detailed comparison, we start with a survey637

of the global KE field from each of the three simulations on February 1st of638
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Figure 8: A snapshot of velocity magnitude from February 1st of Year 15 for the (top)

x1-15 km simulation, (middle) x5-NA-15 km and (bottom) x5-NA-7.5 km simulations.35



Figure 9: Mean SSH in the NA from observations (Maximenko), x1-15 km, x1-NA-7.5

km and x1-NA-15 km, moving clockwise from upper left.
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Table 2: Transport of Major Current Systems: Simulated time-mean transports (Sv)

through common sections are compared to observational estimates. Simulated transports

are of the form mean±standard-deviation, while observed transports are of the form best-

estimate±observational-error. Positive values are north and eastward. Observational

estimates are from Nowlin and Klinck (1986) (Drake Passage), Ganachaud and Wunsch

(2000) (Tasmania-Antarctica), Sprintall et al. (2009), (Indonesian Thoughflow), van der

Werf et al. (2010) (Mozambique Channel).

Simulation Drake Tasm- Ind Agul Mozam

Ant Thru

x1-15 148±3 160±5 -10.4±2 -76±35 -8.6±4

x5-NA-15 168±6 179±8 -8.6±3 -70±13 -5.5±3

x5-NA-7.5 161±5 172±7 -9.5±3 -75±18 -5.8±4

obs estimate 134±14 157±10 -15±4 -70±20 -16±13

Year 15 as shown in Figure 8.639

The largest differences between the three simulations occur outside the640

NA where the x1-15 km, x5-NA-15 km and x5-NA-7.5 km simulations have641

resolutions of approximately 15 km, 80 km and 40 km, respectively. At 40642

km, the x5-NA-7.5 km simulation produces Agulhas Rings and weak eddying643

in the ACC and North Pacific. At 80 km, the x5-NA-15 km simulation644

produces no Agulhas Rings and significantly less eddy activity in the ACC645

and North Pacific as compared to the other two simulations. Within the646

NA, the primary difference is that the x5-NA-7.5 km is more energetic than647

the two simulations with 15 km in the NA. The positive impact of increased648

resolution is also seen in Table 2; finer grid resolution generally implies more649

accurate representation of section transports.650
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We note that the retroflection of the North Brazil Current occurs in the651

mesh transition zone for the x5-NA-15 km and x5-NA-7.5 km simulations.652

As the current passes Cabo de Sao Roque and turns northwest, it enters653

the mesh transition zone. The current passes almost entirely through the654

mesh transition zone before retroflecting back to the south and reentering655

the mesh transition zone. Finally, the current exits the mesh transition zone656

as it moves east to form the Atlantic equatorial undercurrent. So not only657

is the mesh transition zone “invisible” in Figure 8, but the transition zone658

does not inhibit the dynamics of retroflection in any obvious manner.659

The mean SSH anomalies from all three simulations and observations660

are shown in Figure 9. Before discussing the patterns in detail, we note661

that the three simulations are much more similar to each other than to the662

observations; biases that exist in any one simulation are, for the most part,663

found in the other simulations. Therefore, discussion of biases relative to664

observations are meant to pertain to all three simulations, except where665

noted.666

The simulations produce a subtropical gyre with SSH amplitudes too667

large by 0.40 m that extends too far into the Atlantic basin. The delayed668

separation of the Gulf Stream is evident by the poleward extension of the669

subtropical gyre along the coast. After separation, the simulated mean path670

of the Gulf Stream tracks the observations very closely.671

The SSH amplitudes of the subpolar gyre are too large by approximately672

0.25 m. While the overall shape of the subpolar gyre in the simulations com-673

pares well with observations, the simulations accentuate the division of the674

gyre caused by the Reykjanes Ridge. The extension of the observed subpo-675

lar gyre as it wraps around the Grand Banks and produces negative SSH676
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anomalies off the southern boundary of Newfoundland is not reproduced in677

any of the simulations, but the x5-NA-7.5 km does produce more negative678

SSH anomalies in this region than the other two simulations.679

The SSH RMS from all three simulations and observations are shown in680

Figure 10. Similar to the mean SSH results, the three simulations are much681

more similar to each other than to the observations. In the simulations,682

the Gulf Stream extends along the coast past Cape Hatteras and does not683

move away from the shelf until reaching Delaware Bay. After separation,684

the simulated Gulf Stream typically undergoes retroflection that periodi-685

cally produces closed, cyclonic eddies that move southwest within the Gulf686

Stream recirculation gyre. This explains the “donut” in SSH variability687

located directly east of the Chesapeake Bay; the upper half of the donut is688

the result of eddies propagating along the Gulf Stream, while the lower half689

of the donut is the result of cyclonic eddies propagating southwest.690

In both simulations with 15 km resolution in the NA, the axis of max-691

imum variability is rotated about 10◦ in the counter clockwise direction692

direction relative to observations. The simulation with 7.5 km resolution693

does noticeably better in reproducing the east-west orientation of maximum694

mesoscale activity. All of the simulations show a Northwest Corner, with the695

x5-NA-7.5 km being somewhat more accurate than the 15 km simulations.696

The relatively weak Northwest Corner is overshadowed by the anomalous697

mesoscale activity in the NA Current south of the Reykjanes Ridge.698

All of the simulations produce Gulf of Mexico Loop Rings. The SSH699

RMS associated with the creation of these loop rings is approximately 50%700

of the amplitude as observed, with the x5-NA-7.5 km simulation somewhat701

closer to observations than the two 15 km simulations.702
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Figure 10: SSH RMS in the NA from observations (AVISO), x1-15 km, x1-NA-7.5 km

and x1-NA-15 km, moving clockwise from upper left.
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Table 3: Transports within the Caribbean Region: Simulated time-mean transports

through common sections are compared to observational estimates. Simulated trans-

ports are of the form mean±standard-deviation, while observed transports are of the

form best-estimate±observational-error. Positive values are northward and eastward.

Observational estimates are from Johns et al. (2002) and Roemmich (1981).

Simulation Antilles Mona Pass Wind Pass FL-Cuba FL-Baham

x1-15 km -7.1±1.8 -1.8±0.6 -4.6±1.8 14.1±1.8 16.5±2.3

x5-NA-15 km -8.7±2.2 -1.9±0.6 -3.9±2.0 14.4±1.7 17.6±2.1

x5-NA-7.5 km -10.3±2.6 -2.1±1.0 -4.8±2.4 17.1±1.5 22.4±2.3

obs estimate -18.4±4.7 -2.6±1.2 -7.0±? 31±1.5 31.5±1.5

The simulated transport through various sections within the Caribbean703

is shown in Table 3. The format is the same as in Table 2; simulated704

transports are listed as mean with standard deviation and observed trans-705

ports are listed as best estimate along with observational error. The result706

from Table 3 is that all simulations produce transports of the correct sign707

(i.e. the transports are in the right direction) but with an amplitude of708

approximately 50% of the observed estimate. The other broad result is709

that resolution seems to improve the simulation as compared to observa-710

tions; all transports produced by the x5-NA-7.5 km simulation are closer to711

observations than the two simulations using 15 km resolution.712

5.3. Computational Performance713

Since we have yet to optimize the computational efficiency of MPAS-O,714

we do not expect the computational performance to be on par with existing715

IPCC-class models. Yet, we need to provide some evidence that the MPAS-716
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O model could obtain the computational efficiency of models like POP,717

because it is only the combination of simulation quality and computational718

efficiency that will produce a compelling alternative to structured-grid mod-719

els.720

Although a more thorough exploration of this model’s computational721

performance is left for a later time, a basic study has been performed to722

ensure that the model is computationally viable. This initial study was723

performed on Lobo, a cluster housed at Los Alamos National Laboratory.724

Lobo contains 4352 AMD Opteron model 8354 cores, each with 2GB of725

RAM. Performance of MPAS-O is compared with POP on Lobo for a set726

of quasi-uniform meshes.727

The comparison is made by comparing ”stripped-down” versions of MPAS-728

O and POP. The computational performance is measured using only the729

simplest numerics: centered-in-space horizontal and vertical advection, ex-730

plicit vertical mixing and no other physical parameterizations. Furthermore,731

both models use the same time step. The use of such simple numerics is to732

ensure that the work per degree of freedom is commensurate between the733

two models.734

Table 4 shows computational performance as measured in Simulated735

Years Per Day (SYPD) per CPU wall clock day. Larger table entries mean736

more SYPD for a given number of processors. Computational performance737

is measured by configuring POP at the common 1◦ and 0.1◦ resolutions738

and by configuring MPAS-O at 60 km, 30 km and 15 km resolutions. Data739

obtained from POP is scaled to the MPAS-O resolutions and vice versa.740

The bottom column in Table 4 measures the ratio of MPAS-O to POP741

performance. These numbers indicate that a stripped-down MPAS-O is742
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slower than a stripped-down POP by a factor of 1.9 to 3.4 at equivalent743

resolution.744

The performance values in Table 4 were obtained by testing each con-745

figuration with processor counts ranging from 16 to 1024, and using the746

best case. As expected, low-resolution configurations are fastest on smaller747

processor counts and high-resolution configurations are fastest on high pro-748

cessor counts. Using the 30 km grid, throughput in SYPD per CPU wall749

clock day for processor counts between 16 to 1024 are all within 20% of750

perfect scaling.751

Table 4: A comparison of computational performance of stripped-down versions of

MPAS-O and POP dynamical cores. Each column shows performance at a different

resolution. Performance is measured in SYPD per CPU wall clock day, so larger num-

bers indicate better performance. Resolution increases to the right. Performance data

for POP is obtained at 1.0◦ and 0.1◦ resolutions and interpolated to the MPAS-O 60,

30 and 15 km resolutions. Performance data for MPAS-O is obtained at 60, 30, and 15

km resolutions and interpolated to the POP 1.0◦ and 0.1◦ resolutions. The bottom row

shows the ratio of MPAS-O to POP performance.

1.0◦ 60 km 30 km 15 km 0.1◦

MPAS-O 1.5×10−1 5.5×10−2 7.0×10−3 8.0×10−4 2.6×10−4

POP 2.8×10−1 1.1×10−1 1.9×10−2 2.5×10−3 9.0×10−4

ratio 1.9 2.0 2.7 3.2 3.4

Since MPAS-O uses an unstructured grid in the horizontal, neighbor-752

ing cells, edges and vertices are addressed indirectly. Yet in the vertical,753

MPAS-O uses structured data addressing, just like all other IPCC-class754

ocean models. We have exploited the data uniformity in the vertical by755
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defining all arrays with the vertical levels as the leading index, thus leading756

to uniform memory access patterns when looping over the vertical index757

within Fortran. We speculate that the penalty caused by MPAS-O’s in-758

direct addressing in the horizontal is partially averted due to the direct759

addressing in the vertical. Furthermore, the study by MacDonald et al.760

(2011) suggests that the penalty for non-uniform data access in the hori-761

zontal can be entirely mitigated when there is sufficient computational work762

per Degree of Freedom (DOF). Using such simple numerics in the stripped-763

down MPAS-O / POP comparison shown in Table 4 results in very little764

work per degree-of-freedom, and this tilts the scale against MPAS-O. As we765

add physical parameterizations, such as KPP (Large et al., 1994) and GM766

(Gent and McWilliams, 1990), and use higher order numerical methods, we767

expect that the MPAS-O performance will approach that of POP.768

An alternative to the stripped-down comparison is to compare the mod-769

els in their respective standard configuration at eddy-permitting resolution.770

In this case, the actual throughput, including I/O, for the x1-15 km simu-771

lation is two SYPD on 3000 Lobo processors, which is the same as high res-772

olution simulations of the POP ocean model in its standard high-resolution773

0.1◦ configuration on the same machine (see, e.g. Maltrud et al. (2009)).774

The above comparisons assume that the value of each DoF in MPAS-775

O and POP is equal. Thus, a potential pitfall of a comparison based on776

DoF is that it neglects the “value” of each DoF. In the end, we wish to777

measure the quality of the simulation per computational cost, which is a778

more difficult and nuanced metric to obtain. We are currently attempting779

to measure “quality per cost” for MPAS-O and POP using an idealized,780

mesoscale eddy resolving, ocean test case.781
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6. Discussion and Conclusions782

The numerical method recently developed by Thuburn et al. (2009) and783

Ringler et al. (2010) is extended to solve the 3D, hydrostatic, Boussinesq784

equations for the simulation of the global ocean circulation. The novel785

aspect of this model is its ability to accurately simulate geophysical flows786

on a mesh that contains a wide range of grid scales. In particular, the787

model employs a host of other numerical methods that can be considered788

to be “state-of-the-art”, such as an Arbitrary-Lagrangian-Eulerian vertical789

coordinate, a monotone tracer transport scheme and a split-explicit time-790

stepping algorithm.791

The motivation for the MPAS modeling framework is primarily that792

the approach allows access to multi-resolution meshes, while providing an793

underlying finite-volume, numerical method that is robust on time scales794

commensurate with climate modeling. Furthermore, it accomplished this795

with acceptable computational efficiency. As described in Section 2, the796

approach allows for the creation of multi-resolution meshes based on a sin-797

gle scalar function, the mesh-density function, that is both intuitive and798

flexible. The guarantee of mesh quality (Gersho, 1979) means that one799

does not have to become an expert in mesh-generation technology to gen-800

erate high-quality grids. In this contribution we have deployed the SCVT801

mesh generation tool in a very conservative manner; the meshes have a sin-802

gle high-resolution region in the NA that is only 5X the resolution of the803

low-resolution grid. Based on the results in Ringler et al. (2011), ocean sim-804

ulations that employ meshes with 20X or more in grid variation seem readily805

attainable. In addition, more physics-based approaches to mesh generation,806

such as enhanced resolution in coastal regions or in the vicinity of narrow807
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sills and channels are waiting to be explored.808

In terms of validating this modeling approach, we posed two questions.809

The first question to be addressed was as follows: does the global, quasi-810

uniform simulation (x1-15km) do a fair job at reproducing the observed811

structure of the major current systems, ocean gyres and mesoscale activity?812

While the x1-15km certainly has biases that we will elaborate on below, the813

simulation qualitatively and, often, quantitatively reproduces the observa-814

tional data. First, the transports of the major current systems shown in815

Table 2 are surprisingly similar to the observational estimates. We find the816

results surprising because absolutely no tuning was done to improve these817

currents. With the exceptions discussed below, the magnitude and location818

of mesoscale eddy activity is well represented in the x1-15km simulation.819

In terms of biases, the simulated SSH amplitudes of the subtropical820

and subpolar gyres shown in Figures 6 are too large by 0.25 to 0.50 m as821

compared to observations (Maximenko et al., 2009). The Agulhas Rings822

are too strong and long-lived, resulting in too much SSH variance in the823

South Atlantic. The x1-15km simulation supports a frontal boundary on824

the equatorward side of New Zealand resulting in a region of mesoscale825

eddy activity that has no analog in the observational data set. Also, while826

a weak Northwest Corner is present in the x1-15km simulation, the NA827

Current extends to the northeast with too much eddy activity in the vicinity828

of Reykjanes Ridge.829

The transports through important sections (see Table 2) are within ob-830

servational error for the x1-15km simulation. Within the Carribbean Region831

(see Table 3), the simulated transports of the x1-15km simulation are too832

weak by about 50%. In simulations on the timescale of the thermohaline833
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circulation, we might expect the value of these transports to change.834

Many of the biases described above are typical for ocean models at ed-835

dying resolution. For example, overshooting in the separation of eastern836

boundary currents has been a problem for over two decades e.g., Semtner837

and Chervin (1992); Maltrud et al. (1998); Maltrud and McClean (2005).838

Significant improvements to the separation of the Gulf Stream and the struc-839

ture of the Northwest Corner were seen in the the 0.1◦ POP simulation of840

Maltrud et al. (2009) compared to Maltrud and McClean (2005), likely due841

to the inclusion of partial bottom cells (Adcroft et al., 1997). We expect842

similar improvements in the near future when partial bottom cells are im-843

plemented in this model.844

We can also attribute some of the model’s deficiencies to the approxima-845

tions made in forcing these ocean-only simulations. First, the biases in SSH846

are very similar to those found in McClean et al. (2011) when forcing POP847

with the same normal-year CORE wind stress data. In our simulations and848

in McClean et al. (2011) the subtropical and subpolar gyres are too strong.849

In addition, SST and SSS are restored to WOCE monthly-mean data with a850

restoring time scale of 30 days. We expect that the results will improve sig-851

nificantly by computing surface stress, heat and freshwater fluxes through852

bulk formulae based on 6-hourly atmosphere and ocean state variables. We853

will follow up on this below.854

The second question addressed was as follows: can the representation855

of the NA produced by the x1-15 km simulation be reproduced by the x5-856

NA-15 km simulation? The answer to this question is unequivocally “yes”.857

In terms of mean SSH in the NA (Figure 9), SSH RMS in the NA (Figure858

10) and transports throughout the Caribbean (Table 3), the x1-15 km and859
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x5-NA-15 km are essentially identical. It is important to note that the860

“perfect” x5-NA-15 km simulation would be an exact reproduction of both861

the positive and negative aspects of the x1-15 km simulation within the NA862

region.863

The x5-NA-7.5 km simulation uses approximately the same computing864

resources as the x1-15 km simulation, but redistributes grid points in order865

to obtain higher resolution in the NA at the expense of resolution elsewhere.866

In terms of simulating the NA, this redistribution of grid points appears to867

be beneficial. Relative to the 15 km simulations, the transports throughout868

the Caribbean are markedly improved and the SSH RMS is better repre-869

sented. Whether or not this reallocation of computer resources is beneficial870

will depend entirely on the questions being asked of the model simulation.871

At this point we simply note that as opposed to traditional, structured-grid872

global ocean models, such a reallocation is easily accomplished with this873

modeling approach.874

As mentioned above, our hypothesis is that some of the major deficien-875

cies found in the simulations can be removed by forcing the model in a more876

realistic manner. To test this hypothesis we are currently coupling MPAS-O877

into the NCAR/DOE Community Earth System Model. The atmosphere878

counterpart to MPAS-O is already coupled into the CESM (Rauscher et al.,879

2012). Given the vetting that this numerical method has undergone during880

the development and evaluation of the four dynamical cores referenced in881

the Introduction, we have reason to be confident in the method’s ability882

to simulate the global ocean system. Furthermore, the model still lacks883

advanced physical parameterizations such as KPP (Large et al., 1994) and884

a mesoscale eddy parameterization of any type, either seminal (Gent and885
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McWilliams, 1990) or prospective (Ringler and Gent, 2011). Thus, our886

approach is two-pronged. Based on the results presented above, the first887

research track is to continue to increase the realism of MPAS-O by includ-888

ing advanced parameterizations and including more realistic forcing. On889

the second research track we will develop a robust test-suite following Ilicak890

et al. (2012) to carefully quantify the fidelity of the underlying numerical891

approach in ocean-specific configurations.892

While our stated focus of this contribution was the characterization of893

the dynamical core, we could not entirely omit the need for scale-adaptive894

parameterizations. While we omit a mesoscale eddy parameterization in895

these simulations, we are still obligated to provide a horizontal turbulence896

closure that dissipates the downscale cascade of energy and/or enstrophy.897

The use of constant viscosity or constant biharmonic viscosity is not only898

untenable, but impractical; the constant coefficient is either insufficient to899

control noise in the low resolution regions or overly dissipative in the high-900

resolution regions. Left with few alternatives, we included in the model901

a biharmonic viscosity that scales as dx3 and the Leith turbulence closure902

that also scales as dx3. While such choices can be supported by the liter-903

ature and from theory, we have no reason to believe that our choices are904

anything more than simply acceptable. Having anticipated that the lack of905

scale-adaptive parameterizations will limit the utility of this new modeling906

approach, we have begun to systematically evaluate closures for mesoscale907

large-eddy simulations (Pietarila Graham and Ringler, 2012) and to explore908

new extensions to old closures (Ringler and Gent, 2011).909

The current performance results shown in Table 4 lead us to believe that910

while MPAS-O is not as efficient as other ocean models, the computational911
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performance is sufficient to continue forward with the intention of produc-912

ing an IPCC-class global ocean model. In addition, performance tests have913

shown that the MPAS-O code scales well to thousands of processors at high914

resolution. Actual throughput, including I/O, for the x1-15 km simula-915

tion is two SYPD on 3000 processors, which is the same as high resolution916

simulations of the POP ocean model in its standard high-resolution 0.1◦917

configuration on the same machine (see, e.g. Maltrud et al. (2009)). We918

expect that the computational performance of MPAS-O will improve sub-919

stantially as we begin to exploit accelerated architectures that are currently920

becoming available.921

The model presented above demonstrates the ability to solve the 3D922

primitive equations on a mesh that contains multiple grid scales with ac-923

ceptable computational performance. Beyond the novelty of solving the924

equations with variable grid sizes, the method is a typical finite volume925

approach. Finite volume approaches are exceptionally well suited to mod-926

eling the global ocean on climate-change time scales. As such, we view927

this model as a strong candidate for successfully modeling the global ocean928

circulation on time scales of centuries to millennia. But the reality is that929

solving a system of partial differential equations on a mesh with multiple930

scales is the easy part. The hard part, in our view, is developing the full931

suite of parameterizations that work sensibly, i.e. without ad hoc tuning,932

across a wide range of truncation scales. The end goal is to pair this multi-933

resolution partial differential equation solver with a suite of scale-adaptive934

physical parameterizations to produce a truly multi-scale simulation of the935

global ocean system.936
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Appendix A. MPAS-Ocean Equations of Motion1129

Appendix A.1. Continuous Equations1130

We assume that the fluid fills a three-dimensional domain, Ω. We de-1131

compose the boundary, ∂Ω, into the portion of the fluid in contact with the1132

solid wall, ∂Ωw, and the moving free-surface of the fluid, ∂Ωs, that can be1133

uniquely identified by its z-coordinate, zs(x, y). Within Ω we wish to solve1134

to following set of equations:1135

∇3 · v = 0, (A.1)
1136

∂u

∂t
+ ηk× u + w

∂u

∂z
= − 1

ρ0
∇p−∇K + Du

h + Du
v (A.2)

1137

∂ρϕ

∂t
+∇ · (ρϕu) +

∂

∂z
(ρϕw) = Dϕ

h +Dϕ
v , (A.3)

1138

p(x, y, z) = ps(x, y) +

∫ zs

z

ρgdz′ (A.4)
1139

ρ = feos(Θ, S, p, ). (A.5)

Equations A.1 through A.5 are a normal expression of the primitive1140

equations; i.e. the incompressible Boussinesq equations in hydrostatic bal-1141

ance. Variable definitions are in Tables A.5 and A.6. Note that v is the1142

three dimensional velocity, u is the horizontal velocity, and w the vertical1143

velocity, i.e. v = u + wk. The momentum advection and Coriolis terms in1144

(A.2) are presented in vorticity-kinetic energy form (Ringler et al., 2010, eqn1145

5). MPAS-Ocean includes several choices for the equation of state (A.5);1146

Jackett and McDougall (1995) was used for the simulations presented is a.1147

The diffusion terms are left unspecified because there are several choices1148

available within the model. The standard vertical diffusion is1149

Du
v =

∂

∂z

(
νv
∂u

∂z

)
, (A.6)

58



Dϕ
v = ρ

∂

∂z

(
κv
∂ϕ

∂z

)
, (A.7)

where the vertical viscosity νv and diffusion κv may be computed with a1150

variety of vertical mixing schemes. In the simulations presented in this1151

paper, horizontal tracer diffusion is zero and horizontal momentum diffusion1152

uses a biharmonic operator and the Leith closure, as described in Section 3.5.1153

For the purpose of illustrating the discretization methods in this appendix,1154

we use a simple Laplacian operator,1155

Du
h = νh∇2u = νh(∇δ + k×∇η), (A.8)

Dϕ
h = ∇ · (ρκh∇ϕ) . (A.9)

The density, ρ, in (A.7) and (A.9) will be replaced with the thickness h in1156

the next section. The momentum diffusion is in divergence-vorticity form1157

because it is a natural discretization of the vector Laplacian operator with1158

a C-grid staggering.1159

Appendix A.2. Derivation of thickness and tracer equation1160

The continuous form of the continuity equation when using an Arbitrary-1161

Eulerian-Lagrangian vertical coordinate is not frequently derived. We show1162

it here for completeness and to serve as a foundation for the remainder1163

of the model description in this appendix. Consider an arbitrary control1164

volume V (t) that may evolve in time, enclosed by the surface ∂V that is1165

moving with velocity vr (Figure A.11a). Stated within the context of the1166

Reynold’s Transport Theorem (Kundu et al., 2012, p. 88) conservation of1167

mass is expressed as1168

d

dt

∫
V (t)

ϕdV +

∫
∂V (t)

ϕ(v − vr) · ndA = 0 (A.10)
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where v(x, y, z, t) is the Eulerian velocity and n is a unit vector normal to1169

the surface at the differential surface area dA. The variable ϕ(x, y, z, t) may1170

be the fluid density ρ or the density-weighted concentration of some tracer,1171

in units of tracer mass per volume.1172

Before deriving the ocean model thickness equation, it is useful to look1173

at the limits of (A.10). If V (t) is a true Lagranian control volume, then the1174

velocity of the boundary surface ∂V is identical to v, i.e. vr = v. Thus,1175

d

dt

∫
VL(t)

ϕdV = 0 (A.11)

where VL(t) denotes a Lagrangian control volume. Equation (A.11) is the1176

statement of conservation of mass in the Lagrangian reference frame (see1177

Eq. (3) of Ringler (2011)). If, instead, V (t) is fixed, then vr is zero and1178

d

dt

∫
VE

ϕdV +

∫
∂VE

ϕv · ndA = 0 (A.12)

which is a common Eulerian expression for conservation of mass (see Eq.1179

(17) of Ringler (2011)).1180

Next, we assume that the control volume V is bounded in the horizontal1181

by a fixed wall ∂V side that does not vary in time or z (Figure A.11b). The1182

top and bottom boundaries of V , ∂V top and ∂V bot, occur at z = stop(x, y, t)1183

and z = sbot(x, y, t), respectively, where stop > sbot for all x, y and t. Con-1184

servation of mass for this control volume is1185

d

dt

∫
V (t)

ϕdV +

∫
∂V side

ϕ(v − vr) · ndA+

∫
∂V top(t)

ϕ(v − vr) · ndA

+

∫
∂V bot(t)

ϕ(v − vr) · ndA = 0. (A.13)

To highlight the different treatment of the horizontal and vertical directions,1186

recall that v = u+wk, where u is the horizontal velocity, so that u ·(wk) =1187
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Figure A.11: Control volume for Reynold’s Transport Theorem (a), after restricting

the control volume to fixed horizontal boundaries (b), and a two-dimensional horizontal

cross-section of the control volume (c).
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0. On the fixed side boundary ∂V side the normal vector is horizontal and1188

boundary velocity is zero, so (v− vr) ·n = u ·n. To simplify, only consider1189

the vertical velocities through the top and bottom surfaces, so that v · n =1190

v · k = w along ∂V top and v · n = v · (−k) = −w along ∂V bot. In other1191

words, we are ignoring any horizontal components of v · n that occur due1192

to a tilted top or bottom surface. Then1193

d

dt

∫
V (t)

ϕdV +

∫
∂V side

ϕu · ndA+

∫
∂V top(t)

ϕ(w − wr)dA

−
∫
∂V bot(t)

ϕ(w − wr)dA = 0. (A.14)

Next, we rewrite the conservation equation with two-dimensional hori-1194

zontal integrals over A, the horizontal cross-section of V . The boundary of1195

A is ∂A and dl is a differential length along ∂A (Figure A.11c).1196

d

dt

∫
A

∫ stop

sbot
ϕdzdA+

∫
∂A

(∫ stop

sbot
ϕudz

)
· ndl +

∫
A

[ϕ(w − wr)]z=stop dA

−
∫
A

[ϕ(w − wr)]z=sbot dA = 0. (A.15)

For the last two terms we have made the assumption that the area of the1197

top and bottom surface is the same as A. Define the thickness as1198

h(x, y, t) = stop(x, y, t)− sbot(x, y, t) (A.16)

and the vertical average of a variable within the control volume as1199

φ
z
(x, y, t) =

1

h

∫ stop

sbot
φ(x, y, z, t)dz (A.17)

so that the conservation equation becomes1200

d

dt

∫
A

hϕzdA+

∫
∂A

hϕuz · ndl +

∫
A

[ϕwtr]z=stop dA−
∫
A

[ϕwtr]z=sbot dA = 0,

(A.18)
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where wtr = w − wr is the transport through the top and bottom surfaces.1201

We now average all the variables over the area A and take the limit as1202

the area is reduced to a point, i.e, the control volume is reduced to a vertical1203

line, so that the variables are discretized into layers in the vertical but are1204

continuous in the horizontal. Define the averaging operators1205

Ã =

∫
A

dA (A.19)

1206

φ
A

(t) =
1

Ã

∫
A

φ(x, y, t)dA (A.20)

so that (A.18) becomes1207

d

dt
hϕzA +

1

Ã

∫
∂A

hϕuz · ndl + ϕwtr|z=stop
A
− ϕwtr|z=sbot

A
= 0. (A.21)

Note that A is the set of points of the cross-section, while Ã is a scalar value1208

of the area of A. Taking the limit as the cross-sectional area Ã goes to zero,1209

lim
A→(x,y)

φ
A

= φ(x, y). (A.22)

The definition of the weak form of the divergence is given as1210

∇ · F = lim
A→(x,y)

∫
∂A

F · ndl∫
A
dA

. (A.23)

Applying the limit to (A.21),1211

∂

∂t
hϕz +∇ · (hϕuz) + ϕwtr|z=stop − ϕwtr|z=sbot = 0. (A.24)

This is a conservation equation for a fluid constituent of thickness-weighted1212

concentration ϕ in a two-dimensional horizontal layer with thickness h. For1213

the mass of the fluid itself, ϕ is simply the fluid density. For a Boussinesq1214
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fluid, perturbations in density are assumed to be small and the remaining1215

constant density may be divided out, so that the continuity equation is1216

∂h

∂t
+∇ · (huz) + wtr|z=stop − wtr|z=sbot = 0. (A.25)

This is often called the thickness equation.1217

If we assume that wr = w at every point in the fluid, i.e. that our1218

control volumes are Lagrangian control volumes, then the transport across1219

any layer is wtr = 0 and we have1220

∂h

∂t
+∇ · (huz) = 0 (A.26)

which is the isopycnal expression of conservation of volume. If, instead, we1221

assume that stop = z1 and sbot = z2, i.e. assume z-level surfaces such that h1222

is no longer a function of x, y or t, then wr = 0 and wtr = w. In addition,1223

let (stop − sbot)→ 0 to obtain1224

∇ · u +
∂w

∂z
= 0. (A.27)

This is the strong form of conservation of volume written in an Eulerian1225

reference frame.1226

Appendix A.3. Vertical Discretization1227

We now discretize the equations of motion in the vertical, indexed by1228

k, where z = 0 is the mean elevation of the free surface, the z coordinate1229

is positive upward, k = 1 is the top layer, and k increases downward. The1230

discrete vertical operators on a generic variable φ are defined as1231

(φt
:)

m

k = (φt
k + φt

k+1)/2 (A.28)

(φm
: )

t

k = (φm
k−1 + φm

k )/2 (A.29)
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δzmk (φt
:) =

φt
k − φt

k+1

hk
(A.30)

δztk(φm
: ) =

φm
k−1 − φm

k

(h)
t

k

(A.31)

where the superscripts m and t denote the location as the middle or top of1232

cell k in the vertical. Colons in subscripts are a placeholder for the vertical1233

index, and indicate that multiple layers are used by the vertical operator.1234

In this section variables remain continuous in the horizontal and in time,1235

and φm
k (x, y, t) is the vertical average of φ in the layer k, written as φ

z
in1236

the previous section for the control volume. All variables except h and w1237

represent a vertical average over the layer, and the m superscript is omitted1238

for simplicity. The thickness h is just a single value for the layer. The1239

variable wt
k is henceforth defined to be the transport of fluid across the top1240

interface of layer k, i.e. redefined to be wtr as used in the previous section.1241

The model equations with vertical discretization are1242

∂uk
∂t

+ qkhku
⊥
k + [wt

:δz
t(u:)]

m

k

= − 1

ρ0
∇pk −

ρkg

ρ0
∇zmid

k −∇Kk

+νh(∇δk + k×∇ηk) + δzmk (νvδz
t(u:)) (A.32)

∂hk
∂t

+∇ · (hkuk) + wt
k − wt

k+1 = 0, (A.33)

∂(hkϕk)

∂t
+∇ · (hkukϕk) + ϕt

kw
t
k − ϕt

k+1w
t
k+1

= ∇ · (hkκh∇ϕk) + hkδz
m
k (κvδz

t(ϕ:)). (A.34)

Variable definitions are in Tables A.5 and A.6. Horizontal gradients are1243

within each layer, rather than along constant z-surfaces. This coordinate1244

transformation results in the addition of the zmid gradient term in the mo-1245

mentum equation. This term compensates for pressure gradients in sloping1246
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layers that should not cause spurious motion, and is derived in (Adcroft1247

and Campin, 2004, Section A.2)1248

The arguments inside the vertical operators receive indices to replace1249

the colon once the operator is applied. For example,1250

[wt
:δz

t(u:)]
m

k

=
1

2

(
wt

kδz
t
k(u:) + wt

k+1δz
t
k+1(u:)

)
=

1

2

(
wt

k

uk−1 − uk
(h)

t

k

+ wt
k+1

uk − uk+1

(h)
t

k+1

)
(A.35)

The Arbitrary Lagrangian-Eulerian (ALE) coordinate offers a great deal1251

of freedom to choose among vertical grid types. ALE is implemented in the1252

computation of the vertical transport through the layer interface, wt. For1253

idealized isopycnal vertical coordinates, wt is simply set to zero, so there is1254

no vertical transport of thickness, tracers, or momentum. For z-level, wt is1255

computed from (A.33) with ∂h/∂t = 0 for k > 1 so that layer thicknesses1256

remain constant. In z-star coordinates, wt is computed so that sea surface1257

height (SSH) perturbations are distributed throughout the column. When1258

using idealized isopycnal coordinates, the ∇p and ∇zmid terms in (A.39,1259

see below) may be replaced with the gradient of a Montgomery potential1260

(Higdon, 2005, Eq.1)1261

Appendix A.4. Horizontal Discretization1262

The horizontal grids are based on Spherical Centroidal Voronoi Tessel-1263

lations, and are described in detail in Section 2. The discrete horizontal1264

operators on a generic vector field F and generic scalar field φ are1265

[∇ · F:]i =
1

Ai

∑
e∈EC(i)

ne,i Fe le, (A.36)
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1266

[∇φ:]e =
1

de

∑
i∈CE(e)

−ne,i φi, (A.37)

1267

[k · (∇× F:)]v =
1

Av

∑
e∈EV (v)

te,vFe de, (A.38)

where subscripts i, e, and v index the discretized variables through cell1268

centers, edges, and vertices, respectively (Fig 3). In this C-grid formulation,1269

scalar values φi are located at cell centers and the discretized vector field1270

Fe is the normal component at an edge. Thus the divergence is applied to1271

edges and results in a cell-centered quantity; the gradient moves from cell1272

centers to edges; and the vorticity from edges to vertices. Here Ai is the1273

cell area, de is the distance between cell centers, le is edge length, Av is the1274

area of the dual cell around v, ne,i indicates the sign of the vector at edge e1275

with respect to cell i, and te,v keeps track of whether a positive Fe makes a1276

positive or negative contribution to the curl function at the vertex v. The1277

sets EC(i) are the edges about cell i; CE(e) are the cells neighboring edge1278

e; and EV (v) are the edges radiating from vertex v. Detailed explanations1279

and figures may be found in Section 3 of Ringler et al. (2010).1280

The model equations with horizontal discretization are1281

∂uk,e
∂t

+ q̂k,eF
⊥
k,e +

[
ŵt

:,eδz
t(u:,e)

]m
k

= − 1

ρ0
[∇pk,:]e −

ρ̂k,eg

ρ0
[∇zmid

k,: ]e − [∇Kk,:]e

+νh([∇δk,:]e + [k×∇η̂k,:]e) + δzmk (νvδz
t(u:,e)) (A.39)

∂hk,i
∂t

+ [∇ · Fk,:]i + wt
k,i − wt

k+1,i = 0, (A.40)

∂(hk,iϕk,i)

∂t
+ [∇ · (Fk,:ϕ̂k,:)]i + ϕt

k,iw
t
k,i − ϕt

k+1,iw
t
k+1,i

= [∇ · (ĥk,:κh∇ϕk,:)]i + hk,iδz
m
k (κvδz

t(ϕ:,i)). (A.41)
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pk,i = psi +
k−1∑
k′=1

ρk′,ighk′,i +
1

2
ρk,ighk,i (A.42)

ρk,i = feos(Θk,i, Sk,i, pk,i). (A.43)

Variable definitions are in Tables A.5 and A.6. The first subscripted index1282

is the vertical layer, and the second is the horizontal index. Colons in1283

subscripts indicate that multiple vertical layers were used for a vertical1284

operator (first index), or that multiple edges or cell centers are used in1285

computing the horizontal operator (second index). Here Fk,e = ĥk,euk,e is1286

the thickness flux and F⊥k,e is the thickness flux in the direction perpendicular1287

to Fe. The C-grid discretization only contains the normal component of1288

vectors at each edge (Fig 3). The prognostic velocity uk,e, flux Fk,e, and1289

all gradients are normal to edge e. The tangential velocity u⊥k,e, as well as1290

meridional and zonal velocities at cell centers, are computed diagnostically1291

using averaging operators. The variables uk,e and F⊥k,e are not bold in (A.39)1292

because they are the normal and tangential components, respectively, of full1293

vectors.1294

The (̂·)e and (̂·)v symbols represent the averaging of a variable from1295

its native location to an edge or vertex. The potential vorticity is most1296

naturally located at vertices and is computed as1297

qk,v = ηk,v/ĥk,v = ([k · ∇ × uk,:]v + fv)/ĥk,v. (A.44)

The boundary conditions for (A.39–A.41) are impermeable and no-slip.1298

The sides and bottom are impervious to flow, so that uk,e = 0 on all bound-1299

ary edges, and wt
k,i = 0 at the bottom surface. The vertical transport1300

through the sea surface is zero, i.e. wt
1,: = 0. Inflow and outflow bound-1301

ary conditions may be set up for specific domains. The no-slip bound-1302
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ary condition is implemented via the computation of the relative vorticity,1303

[k · ∇ × uk,:]v, at those vertices that reside along the boundary. The rel-1304

ative vorticity at vertices along the boundary is computed assuming that1305

the tangential velocity at the wall is zero. If desired, one may use a free-1306

slip boundary condition by setting [k · ∇ × uk,:]v = 0 at vertices along the1307

boundary. This is equivalent to assuming that the velocity tangent to the1308

boundary has no gradient normal to the boundary.1309

Appendix A.5. Temporal Discretization1310

For convenience we rewrite (A.39-A.41) as1311

∂uk,e
∂t

= T u
k,e(S), (A.45)

∂hk,i
∂t

= T h
k,i(S), (A.46)

∂(hk,iϕk,i)

∂t
= Tϕ

k,i(S), (A.47)

where T variables are the tendency terms and S is the model state, i.e. all1312

variables used in computing the tendencies. The model equations now fit1313

into standard notation for time-stepping routines.1314

Due to the time step restrictions discussed in Section 3.3, a split-explicit1315

time-stepping method is used in the simulations presented in this paper.1316

Define the barotopic and baroclinic velocities as1317

ue =
∑

k ĥk,euk,e

/∑
k ĥk,e (A.48)

u′k,e = uk,e − ue, (A.49)

ζi =
∑

k hk,i −Hi (A.50)

Here ζ is the sea surface height perturbation and Hi is the total unperturbed1318
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column depth. The barotropic momentum and thickness equations are1319

∂ue
∂t

= −fu⊥e − g[∇ζ:]e +Ge, (A.51)

∂ζi
∂t

+
[
∇ ·
(
u:
∑

k ĥk,:

)]
i

= 0, (A.52)

where G includes all remaining terms in the barotropic equation (Higdon,1320

2005, Eqn 5). The Coriolis and pressure gradient terms remain outside theG1321

term because these are the first-order terms involved in surface gravity waves1322

that require the short barotropic time step. Subtracting the barotropic1323

equation (A.51) from the total momentum equation (A.39), one obtains the1324

baroclinic momentum equation,1325

∂u′k,e
∂t

= T u′

k,e(S)− fu′⊥
k,e + g[∇ζ:]e −Ge, (A.53)

where T u′

k,e = T u
k,e + fu⊥k,e, i.e. the Coriolis force is explicitly written rather1326

than remaining in T u′
.1327

The split explicit time-stepping method is summarized as follows.1328

• Initialize by computing une , u
′n
k,e, and ζni using (A.48-A.50)1329

• Stage 1: Baroclinic velocity (3D)1330

ũ
′n+1
k,e = u

′n
k,e + ∆t

(
−fu′n⊥

k,e + T u′

k,e(Sn) + g[∇ζn: ]e

)
(A.54)

Ge =
1

∆t

∑
k ĥk,eũ

′n+1
k,e

/∑
k ĥk,e (A.55)

u
′n+1
k,e = ũ

′n+1
k,e −∆tGe (A.56)

• Stage 2: Barotropic velocity (2D)1331

� Advance u and ζ as a coupled system through j = 0 : 2J − 11332

subcycles, ending at time tn + 2∆t.1333

un+(j+1)/J
e = un+j/J

e +
∆t

J

(
−fun+j/J⊥

e − g[∇ζn+j/J
: ]e +Ge

)
(A.57)
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ζ
n+(j+1)/J
i = ζ

n+j/J
i − ∆t

J

[
∇ ·
(
un+j/J
:

(
ζ̂n+j/J
: + Ĥe

))]
i

(A.58)

� Average subcycles in time.1334

(uavg)
n+1
e =

1

2J + 1

2J∑
j=0

un+j/J
e (A.59)

• Stage 3: Update thickness, tracers, density and pressure1335

� ALE step: compute (wt)n+1
i .1336

� Compute T h, Tϕ using velocities, averaged in time, from Stages1337

1 and 2.1338

hn+1
k,i = hnk,i + ∆tT h

k,i (A.60)

ϕn+1
k,i =

1

hn+1
k,i

[
hnk,iϕ

n
k,i + ∆tTϕ

k,i

]
(A.61)

� compute ρn+1
i,k , pn+1

i,k , (νv)
n+1
e,k , (κv)

n+1
i,k1339

� Revise un+1
k,e , ϕn+1

k,i with implicit vertical mixing.1340

This algorithm summary has been greatly simplified for brevity. Stage1341

1 and each subcycle of Stage 2 may be iterated to update velocity and SSH1342

variables, and a weighted average between new and old may be specified1343

for each variable. The full algorithm is repeated in a predictor-corrector1344

process. Thus what is written as a forward Euler step in this write-up is1345

a backwards Euler or Crank-Nicolson step on the second iteration. These1346

iterations improve the stability of the split explicit algorithm, allowing for1347

larger overall time-steps and fewer barotropic subcycles. While the present1348

time-stepping algorithm worked well for the high resolution simulations pre-1349

sented here, future work will determine the best combination of iterations1350

and weighting for stability and efficiency.1351
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A small barotropic correction is added to the velocities used to compute1352

the tendencies in Stage 3 to ensure that the sum of baroclinic thickness fluxes1353

through each cell edge matches the barotropic flux. This, along with the1354

fact that the tracer equation (A.60) reduces to the thickness equation (A.61)1355

for a constant tracer, guarantees tracer conservation to machine precision.1356

72



Table A.5: Latin variables used in prognostic equation set. Column 3 shows the native

horizontal grid location. All variables are located at the center of the layer in the vertical.

symbol name grid notes

Du
h, Du

v mom. diffusion terms edge h horizonal, v vertical

Dϕ
h , Dϕ

v tracer diff. terms cell

f Coriolis parameter vertex

feos equation of state -

F thickness flux edge F = hu

g grav. acceleration constant

G barotropic mom. forcing edge

h layer thickness cell

H total unperturbed depth cell

k vertical unit vector

K kinetic energy edge K = |u|2 /2

p pressure cell

ps surface pressure cell

q potential vorticity vertex q = η/h

S salinity cell a tracer ϕ

S model state -

t time -

T u, T h, Tϕ tendencies -

u horizontal velocity edge normal component to edge

u horizontal velocity -

v 3D velocity -

w vertical transport cell determined by coord. type

z vertical coordinate - positive upward

zmid layer mid-depth location cell
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Table A.6: Greek variables used in prognostic equation set. Column 3 shows the native

horizontal grid location. All variables are located at the center of the layer in the vertical.

symbol name grid notes

δ horizontal divergence cell δ = ∇ · u

ζ sea surface height cell

η absolute vorticity vertex η = k · ∇ × u + f

Θ potential temperature cell a tracer ϕ

κh, κh diffusion cell

νh, νv viscosity edge

ρ density cell

ρ0 reference density constant

ϕ tracer cell e.g. Θ, S

74


